Journal of Organometallic Chemistry, 328 (1987) C37-C39 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

Preliminary communication

The preparation and X-ray crystal structure of $[Ru(SC_6F_5)_2{P(C_6H_5)_2(H_4C_6H-2)}_2]$

Rosa-Maria Catala, Diana Cruz-Garritz, Pilar Terreros and Hugo Torrens

Facultad de Quimica, Ciudad Universitaria, 04510 Mexico DF (Mexico)

Adrian Hills, David L. Hughes and Raymond L. Richards

AFRC Unit of Nitrogen Fixation, University of Sussex, Brighton BN1 9RQ (Great Britain) (Received April 1st, 1987)

Abstract

The complex $[Ru(SC_6F_5)_2(PPh_3)_2]$ has been prepared from $[RuCl_2(PPh_3)_3]$ and $[Pb(SC_6F_5)_2]$ and shown by X-rays to have a pseudo-octahedral structure apparently with two Ru-H-C interactions. It reacts with CO to give $[Ru(SC_6F_5)_2-(CO)_2(PPh_3)_2]$.

The chemistry of ruthenium is prominent in the area of C-H bond activation [1] and in the formation of unsaturated complexes which have potential as, or act as, catalysts in hydrogenation, Fischer-Tropsch reactions etc. [2]. Prominent among catalytically active compounds are those of the PPh₃ ligand whose bulk aids the formation of unsaturated complexes such as $[RuCl_2(PPh_3)_3]$ [3]. During the course of our studies of metal-thiolate complexes [4] we have found that the bulky thiolate ligand $SC_6F_5^-$ is particularly effective in creating potentially unsaturated centres and here we report the formation of the mononuclear complex $[Ru(SC_6F_5)_2(PPh_3)_2]$, in which the unsaturated ruthenium centre interacts with two aromatic C-H bonds, revealed by X-ray crystallography as discussed below.

Treatment of $[RuCl_2(PPh_3)_3]$ with $[Pb(SC_6F_5)_2]$ in acetone gave purple, very air-sensitive crystals analysing as $[Ru(SC_6F_5)_2(PPh_3)_2]$ (A). This complex is an analogue of the series $[{RuX_2L_2}_2][5]$ (X = H or halogen, L = PPh₃ or AsPh₃) but unlike these dimers, A is a monomer, presumably a consequence of the bulk of the thiolate and phosphine ligands.

This has been confirmed by an X-ray diffraction study which has shown (Fig. 1) a greatly distorted octahedral coordination of two mutually *trans* thiolate ligands, two *cis* phosphine ligands, and two rather weaker ('agostic') $Ru \cdots H$ interactions

Fig. 1. View of the complex $[Ru(SC_6F_5)_2(PPh_3)_2]$, down an axis of pseudo-two-fold symmetry. Selected bond dimensions: Ru-P(1) 2.213(5), Ru-P(2) 2.215(4), Ru-S(3) 2.334(5), Ru-S(4) 2.333(4), Ru-H(12a) 2.86, Ru-H(26a) 2.80 Å, P(1)-Ru-P(2) 106.2(2), P(1)-Ru-H(12a) 64.2, P(2)-Ru-H(26a) 66.9, H(12a)-Ru-H(26a) 126.4, S(3)-Ru-S(4) 157.8(2)°. Note: the H atoms are in idealised positions with respect to their phenyl rings.

involving *ortho*-hydrogen atoms of a phenyl of each of the phosphine ligands *. The next nearest atoms to the metal atom are a pair of fluorine atoms, but with $Ru \cdots F$ at 3.73 and 3.34 Å we do not consider these F atoms to be bonded to the Ru, but instead involved in the tight packing of ligands. The Ru-P-C angles in the chelating rings are, at ca. 103°, much reduced from the other Ru-P-C angles (116.9-122.6°) and indicate the strains required to achieve the agostic bonding.

Interactions of this type have been observed for $[RuHCl(PPh_3)_3]$ [6], $[RuCl_2(PPh_3)_3]$ [3] and the cation $[Rh(PPh_3)_3]^+$ [7]; formation of these may be considered to be a first step in an *ortho*-metallation reaction, which is also common in this area of coordination chemistry.

It is significant also that a C-F-Ru interaction has been observed in the ruthenium(III) complex $[Ru(SC_6F_5)_2\{SC_6F_4(F-2)\}(PMe_2Ph)_2][8]$, but such an interaction has not occurred in the ruthenium(II) complex reported here. Evidently the greater electrophilicity of the ruthenium(III) centre is necessary to allow interaction with fluoride.

Complex A reacts with CO in tetrahydrofuran or acetone to give yellow $[Ru(SC_6F_5)_2(CO)_2(PPh_3)_2](\nu(CO), 2048, 1990 \text{ cm}^{-1}, \text{KBr})$ but does not react with

^{*} A table of atomic coordinates and a full list of bond lengths and angles have been deposited with the Cambridge Crystallographic Data Centre.

cyclooctadiene. As might be expected for such an essentially unsaturated molecule, A is active in hydrogenation and Fischer-Tropsch reactions which will be reported at a later date.

Crystal data. [Ru(PPh₃)₂(SC₆F₅)₂], C₄₈H₃₀F₁₀P₂RuS₂, M = 1023.9. Monoclinic, C2/c (no. 15), a 24.030(7), b 13.402(5), c 29.184(10) Å. β 107.34(3)°, V 8971.4 Å³. Z = 8, F(000) = 4112, μ (Mo- K_a) 5.8 cm⁻¹, $D_c = 1.516$ g cm⁻³.

Crystals are purple-coloured plates; the one chosen for diffractometer measurements was ca. $0.12 \times 0.24 \times 0.48$ mm, mounted on a glass fibre and coated in epoxy resin. Photographic examination showed sharp diffraction spots, but a limited range of θ for measureable intensities. Indeed, on our Enraf-Nonius CAD4 diffractometer (with monochromated Mo-radiation), intensity measurements could usefully be made only to θ_{max} 17°. Accurate cell dimensions were refined from the goniometer settings of 25 reflections having $10 < \theta < 11^\circ$.

During processing of the data, corrections were made for Lorentz-polarisation effects and to ensure no negative net intensities. 2605 unique reflections were then read into the SHELX program system [9] for structure determination and refinement.

The coordinates of the Ru atom were calculated from a Patterson map, and the remaining non-hydrogen atoms were located in electron-density and difference Fourier maps. Hydrogen atoms were introduced in idealized positions. With the limited dataset, only the Ru, P, S and F atoms were refined anisotropically; the H atoms were set to ride on their bonded C atoms.

Refinement was concluded at R = 0.080, $R_w = 0.071$ for 2135 reflections (all those with $I > \sigma(I)$) weighted $w = (\sigma(F^2) + 0.00102F^2)^{-1}$. Scattering factors for C, H, F, P, Ru and S atoms were from ref. 10.

All computations were made on the VAX11/750 computer at the Glasshouse Crops Research Institute, Littlehampton, with programs described in ref. 11.

Acknowledgement. We are grateful to CONACYT (México) for financial support (contract PCCBBNA-020927).

References

- 1 H. Werner, M.A. Estervelas and H. Otto, Organometallics, 5 (1985) 2295 and ref. therein.
- 2 B.R. James and D.K.W. Wang, J. Chem. Soc. Chem. Commun., (1977) 550 and ref. therein.
- 3 S.J. Laplaca and J.A. Ibers, Inorg. Chem., 4 (1965) 778.
- 4 D. Cruz-Garritz, J. Leal, R.L. Richards and H. Torrens, Transition Metal Chem., 8 (1983) 127; D. Povey, C. Shortman and R.L. Richards, Polyhedron, 5 (1986) 369; D. Cruz-Garritz, G. Domenzain and H. Torrens, Rev. Soc. Quim. Mex., 30 (1986) 11.
- 5 B.R. James, L.K. Thompson and D.K.W. Wang, Inorg. Chim. Acta, 29 (1978) L237.
- 6 A.C. Skapskii and P.G.H. Troughton, J. Chem. Soc. Chem. Commun., (1968) 1230.
- 7 Y.W. Yased, S.L. Miles, R. Bau and C.A. Reed, J. Am. Chem. Soc., 99 (1977) 7076.
- 8 R.M. Catala, D. Cruz-Garritz, A. Hills, D.L. Hughes, R.L. Richards, P. Sosa and H. Torrens, J. Chem. Soc. Chem. Commun., (1987) 261.
- 9 SHELX, Program for crystal structure determination, G.M. Sheldrick, University of Cambridge, 1976.
- 10 International Tables for X-ray Crystallography, Kynoch Press, Birmingham, 1974, Vol. 4, p. 99 and 149.
- 11 H. Dadkhah, J.R. Dilworth, K. Fairman, C.T. Kan, R.L. Richards and D.L. Hughes, J. Chem. Soc. Dalton Trans., (1985) 1523.